
Chapitre 10 – Le shell, les commandes

B1 ex SI1 Chapitre 10 - Page 1

Une commande shell est une chaîne de caractères en minuscules qui peut être invoquée au travers

d'une invite de commande (console) ou d'un script. Des options et des arguments peuvent la

compléter. Ceux-ci sont généralement appelés paramètres de la commande.

1.1. Le shell.

Le shell ou interpréteur de commande permet d’activer des commandes soit manuellement avec la

console soit de manière programmée sous la forme d’un script qui automatise l’exécution d’un

ensemble de commandes.

Sh (Bourne Shell) est l’ancêtre de tous les shells. Bash (Bourne Again Shell) est le shell par défaut

de la plupart des distributions Linux ainsi que celui du terminal de Mac OS X. Il s’agit d’une

amélioration du sh.

D’autres shells existent comme Ksh (Korn Shell), Csh (C Shell), Tcsh (Tenex C Shell) ou encore

Zsh (Z Shell).

On télécharge et installe un nouveau shell comme n’importe quel paquet avec la commande apt-get

install (environnement Debian) ou dnf install (ex yum install de l’environnement RedHat).

• Le shell est donc le programme qui gère l’invite de commandes. Il attend que l’utilisateur rentre

des commandes. Il est capable :

- de se souvenir des commandes précédemment tapées (on remonte dans l’historique avec la

touche flèche Haut) ;

- d’autocompléter une commande ou un chemin lorsque l’on appuie sur la touche Tab ;

- de rediriger et chaîner des commandes (caractères >, >>, |) ;

- de définir des alias.

• Les scripts shell (programmation shell) sont des fichiers qui permettent d’automatiser une série

de commandes. La session d’un utilisateur peut, par exemple, être paramétrée par des scripts qui

sont exécutés automatiquement en début de session.

Un script shell dépend d’un shell précis. Le langage n’est, en effet, pas tout à fait le même suivant

que l’on utilise Sh, Bash ou un autre shell.

Si le shell utilisé est Bash (script Bash), le fichier de script doit commencer par la ligne

#!/bin/bash. Elle indique quel est le shell utilisé et où il se trouve (#! est appelé le sha-bang).

Ensuite, les commandes à exécuter les unes après les autres sont écrites chacune sur une ligne

différente.

1.2. Configurer sa console avec .bashrc.

Le fichier de configuration de la console .bashrc permet de personnaliser la console. Il figure dans

les répertoires personnels (/root ou /home/sio).

On peut également éditer le fichier /etc/bash.bashrc qui concerne tous les utilisateurs. Ce fichier

bashrc global doit être édité par le super utilisateur root.

Le bashrc personnel est prioritaire par rapport au bashrc global.

1.2.1. Personnaliser l’invite de commandes

Cf. TP1 SI1 §10 page 30 pour modifier le prompt dans le fichier .bashrc du root :

B1 ex SI1 Chapitre 10 - Page 2

1.2.2. Créer un alias

Un alias est une commande synonyme qui permet d’éviter de saisir l’ensemble des paramètres.

Le premier alias dans l’exemple ci-dessous permet, lors de la saisie de la commande ls, d’activer la

coloration des résultats car ls est en réalité systématiquement et automatiquement transformé en ls --

color=auto (cf. également les alias ll et l ci-dessous) :

1.3. Le fichier .profile

De même qu’il existe un ~/.bashrc et un /etc/bash.bashrc, il existe un ~/.profile spécifique à un

utilisateur et un /etc/profile commun à l’ensemble des utilisateurs. Ce sont des scripts de démarrage.

Le fichier .profile est lu lorsque l’on se logue dans le cas des consoles tty1 à tty6 (Ctrl+Alt+F1 à

F6). Le fichier .bashrc est lu lorsque l’on ouvre une console dans laquelle on ne se logue pas (par

exemple la console graphique Terminal d’une Debian avec environnement de bureau ou d’une

Ubuntu Desktop).

En réalité, le fichier .profile fait appel au fichier .bashrc. On peut donc configurer sa console au

travers de ce dernier puisque quel que soit le type de shell, il sera lu d’une manière ou d’une autre.

1.4. Informations sur les commandes.

• La commande which permet de savoir quel est le fichier exécuté lorsque l'on entre le nom d'une

commande.

B1 ex SI1 Chapitre 10 - Page 3

• La commande whatis permet de savoir rapidement à quoi sert une commande.

• Pour obtenir des informations plus complètes sur une commande, la commande man

nom_de_la_commande permet de faire appel au manuel en ligne de commande.

man rm :

1.5. Les commandes de gestion de fichiers et de répertoires.

ls : liste les fichiers d’un répertoire, affiche les attributs d’un fichier.

touch : crée un fichier.

cp : copie de fichier.

rm : supprime un fichier.

mkdir : crée un répertoire.

rmdir : supprime un dossier vide ; rm –r : supprime un dossier et son contenu.

mv : déplace ou renomme ou déplace et renomme un fichier ou un dossier.

ln : crée un lien.

pwd : affiche le répertoire courant.

cd : change de répertoire.

find : recherche un fichier.

cat, more, less : affichent le contenu d’un fichier.

B1 ex SI1 Chapitre 10 - Page 4

1.6. Utilitaires.

grep : recherche de chaînes dans un fichier (permet de filtrer des données) ;

tail : affiche la fin d’un fichier ;

head : affiche le début d’un fichier ;

journalctl : visualiser les logs.

1.7. Les caractères spéciaux.

1.7.1. Les redirections de flux

Les sorties standards comme les sorties d’erreurs sont affichées par défaut dans la console. Il est

néanmoins possible de rediriger le résultat d’une commande ailleurs que dans la console :

→ Rediriger le résultat d’une commande dans un fichier

> fichier : redirige la sortie standard d’une commande dans un fichier (le fichier est créé s’il

n’existe pas, il est écrasé s’il existe déjà).

>> fichier : l’écriture se fait en fin de fichier au lieu d’écraser le contenu du fichier.

→ Rediriger les erreurs dans un fichier

2> fichier : redirige les messages d’erreur dans un fichier (s’il existe déjà, il est écrasé).

2>> fichier : redirige les sorties d’erreur à la fin d’un fichier (le fichier n’est pas écrasé s’il existe

déjà).

2>&1 : redirige les erreurs dans le même fichier que la sortie standard.

B1 ex SI1 Chapitre 10 - Page 5

→ Chaîner les commandes avec le symbole |

Le symbole « pipe » (prononcer païpe) permet de chaîner des commandes, potentiellement de

manière infinie, et décuple ainsi les possibilités offertes par la console.

cde1 | cde2 : redirige la sortie standard d’une commande (cde1) en tant qu’entrée standard d’une

autre commande (cde2).

Exemple :

→ Lire depuis un fichier

On vient de voir que l’on pouvait rediriger la sortie d’une commande ailleurs que dans la console.

L’entrée provient classiquement des paramètres de la commande mais on peut également faire

en sorte qu’elle provienne d’un fichier.

cmde < fichier : redirige l’entrée standard d’une commande à partir d’un fichier.

1.7.2. Les jockers

* : une suite quelconque de caractères dans un nom de fichier.

? : un caractère quelconque dans un nom de fichier.

[…] : un des caractères compris entre les crochets dans un nom de fichier.

B1 ex SI1 Chapitre 10 - Page 6

1.7.3. Les caractères de protection

\ : annule la signification du caractère suivant.

’...’ : annule la signification de l’ensemble des caractères compris entre les quotes.

"…" : idem mais les référencements de variables sont effectués ainsi que l’interprétation de

commandes.

1.7.4. Les caractères de substitution

Les caractères de substitution (anti-quotes) permettent de remplacer une commande par l’affichage

résultant de son exécution. Ce mécanisme est utilisé pour insérer dans une ligne de commande le

résultat d’une autre commande :

1.8. L’éditeur de texte Vi (ou VIM).

→ Mode interactif (mode par défaut au lancement de VIM)

x : suppression du caractère courant

dd : suppression de la ligne courante (elle est en fait coupée)

yy : copie de la ligne courante

p : coller

u : annule la dernière modification

→ La touche i bascule l’utilisateur dans le mode insertion. On sort de ce mode par la touche

d’échappement.

→ La touche : permet de passer en mode commande.

:q! permet de quitter l’éditeur sans enregistrer les modifications.

:w permet d’enregistrer les modifications.

:wq permet de sauvegarder les modifications et de quitter l’éditeur.

1.9. La commande find.

La commande find recherche des fichiers dans une arborescence. Par défaut, elle n’affiche que le

chemin des fichiers trouvés en fonction des critères de recherche donnés. Elle peut également exécuter

des commandes sur chacun des fichiers trouvés.

B1 ex SI1 Chapitre 10 - Page 7

1.9.1. Les principaux critères de sélection

-name fichier : on recherche les fichiers dont le nom est fichier. Il est possible d’utiliser des jockers

mais ils doivent être entre quotes.

-type f ou d : on recherche les fichiers d’un type particulier (f pour fichier ordinaire et d pour

répertoire).

-size taille : on recherche les fichiers ayant une certaine taille.

-group g : on recherche les fichiers appartenant au groupe g.

-user u : on recherche les fichiers appartenant à l’utilisateur u.

-perm d : on recherche les fichiers ayant les droits d.

-mtime n : on recherche les fichiers modifiés il y a n jours.

Remarque : quand un argument est numérique (par exemple celui de -mtime), il peut être précédé de

+ ou de – pour indiquer un seuil minimal ou au contraire une valeur maximale. Ainsi, -mtime +5

signifie que l’on recherche les fichiers modifiés il y au moins 5 jours.

1.9.2. Les critères d’action

-print affiche le chemin des fichiers trouvés (par défaut).

-exec cde { } \ ; exécute la commande cde pour chaque fichier trouvé.

1.9.3. Les opérateurs

-a : ET (par défaut)

-o : OU

! : Négation

